
in

O Causally Consistent Recovery
of Partially Replicated Logs

Kenneth P. Kane
Kenneth P. Birman*

88-949
November 1988

DTIC
ELECTEM~t

AppROVED FOR PUBLIC RELEASE ARl 8

I)ISIRIBUT ION UNLIMITED E

Department of Computer Science
Cornell Universt
Ithaca, NY 14853-7501

*Thi workc was supported by DARPA (DoD) under ARPA order 6037, Contract N00140-87-C-8904, also
by a granm from the Siemens Corporation. The views, opinions and findings contained in this report are those
of the authors and should not be construed as an offilcial Department of Defense position, policy or decision.

89 4 07 073

*SECU19TY CLASSIFICATION OF THIS PAG

REPORT DOCUMENTATION PAGE F 0frn4P0o1V 8

I& REPORT SECURITY CLASSIFICATION Ib RESTRICTIVE MARKINGS aDtejuxis

Unclassified
h. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIIuTION IAVAILANILIIY OF REPORT

Approved for Public Release
2b DECLASSIFICATION JDOWNGRADING SCHEDULE Dist ri but ion Unl1imi ted

4 PERFORMING ORGANIZATION REPORT NUMBER(S) SAMITORING ORGANIZATION REPORT NUMBERt(S)
88-949

6a NAME Of PERFORMING ORGANIZATION 6 b OFF SYMBOL he NAME OF MONITORING ORGANIZATION
Kenneth P. Birman, Assist. Profi (oflappficable) Defense Advanced Research Porject Agency/ISTO
CS Dept., Cornell University________ _____________

S6c. ADDRESS (City. State, and ZIP Cod&) 7b. ADDRESS (City, Stage. and ZIP Cc&e)
Defense Advanced Research, Project Agency
Attn: TIO/Admin., 1400 Wilson Blvd.

_______________________ ___________rlington, VA 22209-2308

Is. NAME OF FUNDINGJSPONSORING Wb OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION it appicable)

DARPA/ISTO I______
4c. ADDRESS (City, $#&#*. and ZIP Code) 10. SOURCE Of FUNDING NUMBERS

PROGRAM IPROJECT ITASK IWORK UNIT
See 7b. ELEMENT NO. NO: NO jACCESSION No,

I I TITLE (Includ e curity Classification)

Causally Consistent Recovery of Partially Replicated Logs

Kenn irman* TH and Kenneth P. Kane

1a. TYPE OF REPORT '13b. TIME COVERED 14I. DATE OF REPORtT (Yew. Month. Dey) IIS PAGSE COUNT
PJechia (Special) -I F ROM____ TO ____ November 1988 41

16 SUPPLEMENTARY NOTATION

17 COSATI CODES I$ SUBjECT TERMS (Continue an r*eese it necessary and identify by block number)
FIELD GROUP SUB-GROUP

19 ABSTRACT (Continue an reverse it necessary and Idensify by block number)

.- An algorithm is presented for the consistent recovery of replicated data in a client-
server system. The algorithm is based on logging and is similar to the optimistic
techniques that are well known in the literature. However, unlike in existing optimistic
techniques, explicit dependency information is not maintained. Instead, dependency
information is estimated from the ordering of messages found in servers' logs. These
dependency estimates can, in general, be expensive to compute. It is therefore shown
how inexpensive estimates can be applied when a system is well structured.

20 DISTRIBUTION IAVAILABILITY Of ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

*UNCLASSIFEDLiNLIMITEO 03 SAME AS RPT. 03 DTIC USERS
)I& NAME 00 RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Are& Code) 1 22c OFFICE SYMBO0L

DO FORM 1473.84 MAR B) APR edition may be used until exhausted SECURITY CLASSIFICATIQN OF 7141% PAGEI
All other edition% ate obsolete.

Causally Consistent Recovery,
of Partially Replicated Logs I

U "[]

Kenneth P. Kane and Kenneth P. Birman 7

Comell University
Computer Science Department
Ithaca, New York 14853 USA

November 28, 1988

Abstract

An algorithm is presented for the consistent recovery of replicated
data in a client-server system. The algorithm is based on logging
and is similar to the optimistic techniques that are well known in the
literature. However, unlike in existing optimistic techniques, explicit
dependency information is not maintained. Instead, dependency in-
formation is estimated from the ordering of messages found in servers'
logs. These dependency estimates can, in general, be expensive to
compute. It is therefore shown how inexpensive estimates can be ap-
plied when a system is well structured.

1. Introduction

Object oriented distributed systems are becoming increasingly common.

These systems provide users with tools for building abstract data objects.

Such an object gener lly consists of routines for maintaining it along with

an interface by which clients access it. Only the interface of an object is

visible to a client; implementation details, such as replication and failure

,, • , ,, , , , I IIIIII I

letoorco
lawe LilocaM iea

eiott $Sio m1eala

l~atoCltea Ccs

Figure 1: A portion of a distributed operating system. Depicted are two
objects representing a name server and a resource allocation man-
ager. Clients or processes in the system operate by first registering
themselves with the naming service and then allocating resources

under that name.

recovery, are hidden within the object module. Figure I depicts such a

system.

Failure recovery in these systems is often accomplished through the use

of logging. By writing to a log file the sequence of updates that occurs

to an object, the object's state can be reconstructed after a failure. How-

ever, because the states of objects may be related, consistency problems

potentially arise if object logs are not coordinated. For example, in the

system of figure 1 the state of the resource manager is dependent on the

state of the name server; only registered clients may allocate resources.

Suppose a failure causes a client registration record to be lost (not logged).

If resource allocations are logged for this client, then the system may later

recover into a state that reflects the client's allocations without reflecting

its registration.

Transactions can be used to enforce consistency between logs. For ex-

ample, the registration of a client name and its allocation of resources could

2

be grouped into a single transaction and committed as a unit, in order to
ensure that they are recovered atomically. However, many applications
do not require the full power of atomicity that transactions provide. Of-
ten a weaker form of consistency, such as causal consistency, is sufficient
to guarantee correctness [Lam78,BJ87a). In loosely coupled systems such
as ISIS [BJ87a], this weakening of consistency usually leads to improved
performance and availability.

This paper presents a log-based mechanism for the causally consistent
recovery of replicated data objects. The problem of representing and main-
taining causal dependency information about the updates on objects is
not a simple one. Solutions to this problem have been devised for many
different settings, including inter-process communication [BJ87b,PBS881,
highly available distributed services (LL86, and optimistic failure recovery
[SY85,JZ88. Dependency information in these systems is maintained ex-
plicitly: each object update is tagged with either an enumeration of the
updates on which it is dependent or with a timestamp that reflects the
update's causal ordering.

Unfortunately, it can be difficult or impossible to maintain explicit de-
pendency information about updates when the set of object clients is ei-
ther unknown or large and dynamically changing. The recovery algorithm
presented in this paper avoids the need to maintain explicit dependency
information by estimating such information from the ordering of updates
in object servers' logs. When an object server first recovers from a failure,
it approximates the set of dependencies in the system from ordering infor-
mation available in the logs of servers. This information is then used to
ensure that only consistent object states are recovered.

The presentation of the algorithm is divided into two parts. First, in
sections 2 through 6, a recovery algorithm is derived based on explicit
knowledge of the dependencies between object updates. In section 2, the
formal system model is presented and in section 3 the notions of consis-
tency and correctness are defined. Based on these definitions, section 4
outlines several consistency problems that arise through the use of logging

3

and presents a basic sketch of the recovery mechanism. The actual imple-

mentation of the recovery algorithm is built on functions for consistently

adding and deleting entries from logs. These functions are presented in

section 5 and used in section 6 to describe the recovery algorithm.

The second part of the presentation discusses methods for estimating

dependency information from the ordering of updates in object logs. Sec-

tion 7 presents several dependency estimates and describes how they can be

used in the recovery algorithm in place of the values they approximate. In

general, the estimates used can be expensive to compute. Because of this,

section 8 describes a special class of systems in which inexpensive estimates

can be used by the algorithm.

The material presented in this paper is a summary of that in (Kan891.

Much of the formalism and all of the proofs have been omitted for the

purposes of brevity.

2 System Model

2.1 Partial Replication

Our system model is a partially replicated variation of the client-server model

of computation. A set of servers, denoted SERV, are used to maintain

replicas of a set of data objects. Each server maintains replicas of several

different objects. Data objects are not fully replicated: each object is

replicated at only some of the servers. We let D denote the set of all data

objects in the system and let SERVA denote the subset of servers managing

a replica of object A (A E D).

Objects are accessed by a set of clients that may or may not differ from

the set of servers. In order to access an object, A E D, a client broadcasts

a request to all servers of A, that is, to all members of SERVA. Upon

receiving such a request, each server of object A performs the requested

operation on its local copy of A.

We make no assumption about the relative ordering of client requests.

4

il kCamps Camps Ma42 Camps Camps

:okb1 j, : .. "6 2 -, t pC WUp,

jobb

ent 1: dciet .un ciini l...... ,.... ... -"

(o) (b)

Figure 2: An example of a partially replicated printer service. In figure 2(a),
both system clients are broadcasting job submissions. In fig-
ure 2(b), the job submissions have completed with the second

client broadcasting a notification of the completion of the first

job.

Servers may receive the same requests in differing orders, if the orders
are mutually consistent and correct with respect to the application being

implemented. It is the responsibility of clients to ensure that such correct

orderings are perceived by the servers. To this end, clients may use a

variety of broadcast mechanisms, each differing in the ordering properties

it provides.

As an example, consider figure 2. This figure depicts two states in
the execution of a system maintaining information about a printer service.

The system consists of three servers (f, g, and h) replicating two data

objects (Jobs and Cornpa). The object Jobs is a list of jobs that have

been submitted for printing and is replicated at servers f and g. The
object Comps is a list of completed jobs and is replicated at servers g

and h. Figure 2(a) depicts a state of the system in which two clients

(client 1 and client 2) are submitting jobs for printing. Note that the job
submissions will be received in different orders by the two servers of object

5

Jobs. Figure 2(b) depicts a later state of the system after which both

job submission broadcasts (job, and job2) have completed. In this state,

dienat 2 is in the process of broadcasting a completion notification for job,.

2.2 Logging

In order to support recovery from failures, each server maintains a log of
the requests that it receives.

Definition 2.1 A log is a totally ordered set (L, -L) of requests.

Here, L is the set of requests received by a server and --L is the order

in which those requests were received. Only update requests are actually

logged. Read only requests are omitted because they do not affect an
object's state. Note that because servers may receive requests in different
orders, they may also log requests in different orders.

Definition 2.2 The projection of a log, (L, -L), onto an object, A E D, is

the set of object A requests in the log. Formally,

(-L,-iL) IA = {zEL I zisarequestonobjectA }

In order to decouple the execution speed of servers from the speed of

logs, servers maintain their logs asynchronously. No coordination occurs

between the logs of different servers. In addition, no coordination occurs

between the state of a server and its log. The state of a log may often

lag behind the state of its server. (This approach is orthogonal to that

of wuie-ahead iogygut where the state of an object and its log are always

synchronized (BHG87J.)

2.3 Failures

Servers fail by crashing [SS831. When a server crashes, it immediately ceases

to receive, process, and log client requests. We will not address the problem

6

jai"I

cliene

..

G ,3

IUU 2,

im 0 tieiIuMt

ig 3: Oepsilexcto oftepitrsrieofiue2Dpie

are twojosbmisinroacats(jo,_nd_____logwthon

job cmple io noific tn(op)Alod ice artw fi-
urs Seve ffisatietansrvr9aia im 2 I h

digrm hoio lfie ersntpoes(sre rcitex

ectoswiedaoal0;w ersn eqetmsaebod
cats Dotdlnsrpeettelg ingo eus esgsb

seves Th leghoI otdLn niae h aec ewe

th reep ofarqetadisIhscllgig

of server partitions [DGMS85J. When a server is functioning, we assume
that it can communicate with all other functioning servers.

Figure 3 depicts a possible execution of the printer service shown in fig-
ure 2. In the example, server f fails at time t, after receiving (and logging)
job,, but before receiving job2. Server g fails at time t2 after receiving (and
logging) all three requests. Server h functions continuously through out the

example, receiving and logging the job completion notification corn i. Note
that the final logs of servers f and g do not agree on the state of object
Jobs. Not only do they contain different requests for the object, but they
reflect different orders on those requests.

2.4 System State

At the time a server recovers, the objects in the system can be divided into
two categories. An active object is one for which some server is actively
managing a replica. An inactive object is one for which all servers of the
object have failed or are in the process of restoring their replicas.

For the purpose of recovery, the state of the system can be summarized
in the following manner:

Definition 2.3 A state of the system is characterized by the following val-

ues:

For each data object, A E D:

ACTA The set of servers actively managing a replica of ob-

ject A.

RECA The set of servers in the process of restoring their

replicas of object A.

FALA The set of failed servers of object A.

For each server, f E SERV:

(L, -- I) The log of server f.

8

ACTj. = {g} RECi., = 0 FALij,,. = f/}

ACTc.p,,1 . = {g, h} RECc.,,p. = 0 F.4Lc.,.p. = 0

(L1 .-. j): job, (L V-.): (Lj.b #):, -):

Figure 4: A state from the printer service execution given in figure 3. De-

picted is the state of the system immediately after time t,.

As an example, consider again the execution of figure 3. Figure 4 shows

the state of this system immediately after time ti.

3 Causal Dependencies

During the execution of a system clients can interact with one another.'

These interactions often lead to data dependencies between the requests the

clients issue. For example, in figure 2 the job completion notification comp,

is causally dependent2 on the job submission job1 : a job cannot complete

until after it has been submitted.

Causal dependencies restrict the set of correct request orderings that

can be perceived by servers. A server should never receive two causally

related requests out of causal order. Earlier it was stated that servers may

receive requests in differing orders, provided that those orders are correct

for the application. This can be stated more precisely by saying that servers

may receive requests in any order consistent with causality.

'Clients can interact either directly, by sending messages to one another, or indirectly,

through the objects managed by the servers.
2 Many types of dependencies can exist between client requests. In this paper, however,

we will focus on casal dependencses.

9

Request System: (R, -R)

R = {jobi, job2 , conp}

jOb -<R COrplI

Figure 5: A request system representing the dependencies in the printer ser-
vice. The system consists of three requests: two job submissions

and a job completion notification. The only causal dependency in
the system is the one between the completion notification of job1

and its submission.

3.1 Request Systems

The causal dependency structure of an application can be summarized by
means of a request system.

Definition 3.1 A request system is a partially ordered set (R, -<R) of re-
quests.

Here, R is the set of all requests made by clients in the system and -<R is
a partial order that relates all pairs of causally dependent requests. The
partial order -<I may be interpreted as meaning that if two requests are
related z -<R Y, then request y is causally dependent on request z (i.e.

request y must follow request x). The relation -<,R is equivalent to the

"happens before" relation of Lamport [Lam78]. Like the "happens before"

relation, -<j is transitive. We will sometimes use the notation z.A in order

to refer to a client request made on object A.
Figure 5 shows the request system for the example given in figure 2.

Note that causal dependencies hold between requests made by different
clients as well as between requests made on different objects: request compi

is dependent on request job,, even though the former is made by client 1

on object Jobs while the latter is made by a different client on a different

object.

10

It is the responsibility of clients to enforce any request ordering con-

straints that must hold between their requests. Servers simply process and

log requests in the order in which they are received. One possibility is for

clients to use reliable ordered broadcasts [BJ87b,CM84,CASD86 to ensure

the proper ordering between requests.

3.2 Dependencies and server logs

Because servers log requests in the order they are received, casual depen-

dency constraints also apply to logs. That is, the ordering of requests in

a server's log should always be consistent with the request ordering con-

straints of the application. This observation can be formalized as follows:

Definition 3.2 A log, (L/, I), for server f is causally consistent with

respect to a request system, (R, -<I), if

Vy.B E L1 : Vz.A E R (z -<R y):

(I ESERVA) (z.AE L A z -i y)

3.3 Dependencies and recovery

Causal dependencies also affect the issue of consistency between the states

of different objects. The state of a system should never reflect a request

unless all of the causal dependents of that request are also reflected in the

state of the system. For example, the printer service should not reflect the

completion (compl) of the first job unless it reflects the job's submission

(job). Insuring this type of consistency is the problem at the heart of object

replica recovery. The problem is analogous to the problem of generating

checkpoints along a consistent cut.

3.4 Maintaining dependency information

Many methods exist for maintaining causal dependency information about

the updates in a system. One method is to tag each update with a list of

identifiers of its dependents; this is the approach taken in Psync [PBS88).

11

A similar method, and the one used in ISIS [BJ87b], is to piggyback each
update message with a copy of each of its dependents. Another method is

to tag each update with a timestamp that reflects the update's causal order-
ing with respect to other updates; this approach is used in both the highly
available services [LL86] and optimistic failure recovery [SY85,JZ88J. Each

of these examples illustrates a method based on maintaining dependency

information explicitly. Unfortunately, it can be difficult or impossible to

maintain explicit dependency information when the set of clients is either
unknown or large and dynamically changing. In this paper we examine an

alternate approach based on maintaining dependency information implic-
itly. In particular, dependency information is estimated from the ordering
of updates in servers' logs.

4 Failure Recovery

Servers use their logs to recover from failures in the usual way. In order to

reconstruct the state of a failed object replica, a recovering server simply

re-executes the sequence of requests logged for that object. Once the state
of the object replica is restored, the recovering server begins receiving and

processing new requests for it. Several synchronization problems potentially

arise, however, if the states recovered by servers are not coordinated.

4.1 Synchronizsation Problems

Because of request dependencies and uncoordinated logs, a failed server

can recover its replica of an object in a state that is inconsistent with the

states of other object replicas in the system. We present three examples to

illustrate how such inconsistencies can occur.
One type of inconsistency can occur when a failed server recovers its

replica of an object that is already active in the system. The state of the

replica recovered by the failed server will be the state of the object from

the time of the server's failure. Since the time of this failure, however, the

12

.=. ==.=.= =.,,,,, ... , = ms • ms==l li I II II

object has probably undergone changes that will be reflected in the states of
the active replicas. The state recovered by the failed server will, therefore,

likely disagree with the active replicas. This problem can be illustrated in
figure 3. Suppose server f recovers between time ti and time t2. The state
it recovers for object Jobs (the state represented in its log) does not reflect
the submission of job2. Server f will therefore disagree with server g on the

set of submitted jobs.
This problem can be easily solved by transferring the state of the active

object replicas to the failed server at the time of its recovery. The recovering

server could then ignore its log and use the transferred state to initialize
its object replica. This is the approach used by ISIS [BJ87a] and will be
the approach taken here. We refer to the problem of initializing replicas

of active objects as the JOIN problem. A more formal discussion of this
problem is given below.

A similar type of inconsistency can occur when several failed servers all
simultaneously attempt to recover their replicas of the same inactive object.
Because each server probably failed at a different time, each server's log

probably reflects a different state for the object. It is therefore likely that
each server will recover its replica in a state that disagrees with the states
recovered by the other servers. This problem can also be illustrated in

figure 3. Suppose both server f and server g recover after time t2. In this
case, server g will recover submission job2 while server f will not.

In order to solve this problem, the recovering servers must cooperate

and agree on a state for the inactive object. Ideally, this state should be as
recent as possible. In synchronous systems, where the states of replicas are
coordinated, the most recent logged state is that of the last server to fail

[Ske85I. However, in asynchronous systems, this is not true. Any server

may have potentially logged the most recent state. It is even possible that
different servers may have logged different requests. In this case, none of
the logged states is the most recent. Each contains some requests that

are not present in the other logs. A fairly recent state can generally be
constructed, though, by merging the logs of all recovering servers.

13

Both of the above examples illustrate synchronization problems that
are rooted in the asynchrony of logging and failures. A more difficult syn-
chronization problem arises from the presence of request dependencies. As
shown above, an object replica can be recovered in a variety of states, de-
pending on who is recovering the replica and at what time. Because of
this, it is possible that replicas of two different objects can be recovered in
causally inconsistent states. That is, one object can be recovered in a state
that contains a request for which causal dependents (on other objects) were

not recovered.
For example, consider figure 6. This figure shows an execution of the

printer service similar to the one given earlier. However, unlike in the earlier
execution, server f fails before logging any request, and server h fails at
time t2 (in addition to server 9). If servers f and h were both to recover
(after time t2) before server 9, the system would be in a causally inconsistent
state. That is, the system state would reflect compl, the completion of jobh,
without reflecting the submission of job,.

4.2 Synchronisation Phase

In order to solve these problems, the log of a recovering server can be
synchronized with the logs (states) of the other servers in the system at the
time of recovery. The recovering server's log can by synchronized with the
logs of active servers (on the states of active objects) as well as with the

logs of other recovering servers (on the states of inactive objects).
We divide the recovery sequence of a failed server into two parts: a

JOIN part and an ACTIVATE part. The JOIN part addresses the prob-
lem of synchronizing the recovering server's log with the states of active
objects. The ACTIVATE part addresses the problem of synchronizing the
recovering server's log with the logs of other recovering servers on the states

of inactive objects. Figure 7 illustrates the relationship of these two parts
in the recovery sequence.

The JOIN and ACTIVATE problems are formally described below and

14

B
I

...
...!.

B B

I

I

I

II

I

iI

I

II

j joblI

.............
.............

..............
...

B
I

O "

|

"" " I

I
I

client 2

time 0 time C1 tume 2

Figure 6: An example of causally inconsistent recovery. If servers f and h
were both to recover after time 12, they would recover in mutually
inconsistent states (server h would reflect the completion, comp,
of job, while server f would fail to reflect the job's submission).
Note the dotted box near the time line of server f . This box
shows the point at which the job submission job, would have
been logged by server f, had that server remained functioning.

15

their solutions are presented in the following sections. In order to simplify

the discussion we will assume that, at the time of a server recovery, all active

servers of an object have received and logged the same set of requests for

that object (although possibly in different orders). We will refer to this set

of requests as the active state of the object. Formally, the active state of

object A is

ASA = (L I , -'*,) IA V f E ACTA

This assumption on the states of active servers may appear to violate the

statement that servers receive and log requests asynchronously. However,

the assumption only applies to the active servers of an object and only

at times of a server recovery. It should be pointed out that enforcing the

assumption is relatively easy. The details can be found in [Kan89].

JOIN Problem

When a server, f E SERV, first recovers from a failure, its log is brought

into agreement with the states of the active objects3 in the system. The

recovering server's old log, (Li,-"f), is altered to create a new log, (L;, -;),
that agrees.with the logs of active servers on the states of active objects.

Formally, a new log for server f is generated with the following properties:

" The new log is causally consistent.

" The new log is in agreement with the states of objects that are active.

That is,

VAED(ACTA #6): f ESERVA = (L;,-;)1A = ASA

ACTIVATE Problem

Once the log of a recovering server has been synchronized with the states

of the active objects in the system, it is synchronized with the logs of the

3 An object A E D is active if ACTA $ 0.

16

other recovering servers in the system on the states of inactive objects. This

synchronization is done one inactive object at a time.

Let A denote an inactive object that is being recovered. All of the
recovering servers of object A (all of the members of RECA) participate

in the recovery of object A. A new state is chosen for object A that is

consistent with the states of the active objects in the system. Each of the

recovering servers then installs this state in its log as the state of object A.

More precisely, the old logs of the recovering servers

{ (L1,-'t) I fE RECA)

are altered to create new logs

{ (L;,-.;) I I ERECA}

that are in agreement on the state of object A. Formally, the new logs

generated for the recovering servers will have the following properties:

" Each new log, (L, ---;), is causally consistent.

" All new logs agree on the state of object A. That is,

V f,g E RECA : (L, --) IA = (L;, -;) IA

" The state of object A reflected in the new logs is causally consistent

with the states of all active objects in the system. That is, for any

active object, B,

V x.A E (,- A) ta: V Y.B E R (y.B -<a z.A) : y.B E ASB

and
V y.B E ASB : V x.AE R (.A-< y.B) : z.A E (L, -) IA

where (L*, -') is any of the new logs.

" If a server, f E RECA, is actively managing a replica of some object,

B, then the new log does not interfere with the state logged for that

active object. That is,

17

V f E RECA: V B e D (ACTB)
(L;,1 ;) 1B =(LI,,-1) 1B

Note that all servers participating in this synchronization phase should

have previously completed their JOIN phases. The JOIN phase provides
each participating server with information about the states of active objects
in the system. This information is used in the ACTIVATE phase in order to
ensure that the state recovered for the inactive object is causally consistent

with the states of active objects.

Examples

As an example of JOIN and ACTIVATE consider figure 6. Suppose that
server h is the first server to recover after time t2 . No objects will be active
at the time h recovers. The JOIN phase of server h will not therefore need
to take any synchronization actions. Server h will, however, ACTIVATE
object Comps by replaying its log, restoring its replica of Comps to a

state reflecting the completion of job,. Now, suppose server f recovers
next. Again, no synchronization actions will be taken in the JOIN phase

of f because the object that it servers (Jobs) is inactive at the time of
f's recovery. Server f will therefore proceed to ACTIVATE object Jobs
by replaying its log. Note that the state of Jobs reflected in f's log is

inconsistent with the active state of object Comps. In order to restore Jobs
to a state consistent with Comps, f will add request job, to its log before

replaying it. If server g then recovers last, both of the objects it serves will
be active. It's JOIN phase will therefore consist of synchronizing its log
with both of these objects. Server g accomplishes this by deleting request
job1 from its log.

As another example, suppose that server h is not the first server to
recover after time t2. Instead, suppose that server f is the first to recover.
Again, no actions are taken during f's JOIN phase. Server f thus proceeds
to ACTIVATE object Jobs by replaying its log. Note that, unlike before,

object Comps is not active at this time. The state of Jobs recovered by

18

Recovery Sequence of Server f:

JOIN Phase:

1. for each AED: ACTA#0 A f E SERVA:
choose an active server, g, of object A
synchronize (LI, --o) with (L., "-.,) on the state of A

2. reconstruct replicas of active objects from (L1 , -*f)
3. begin processing new requests on active objects

ACTIVATE Phase:

4. while 3AED : ACTA= 0 A f E SERVA:

form a new state for object A by merging the logs of
all of its recovering servers (RECA)

if the new state is inconsistent with the state of any
active object B (ACTB # 0) then abort the
activation of A until additional servers recover

V g E RECA : Install the new state in the log,

(L99 ""), of server g
reconstruct replica of object A from (Lf, ""-)
begin processing new requests on object A

Figure 7: Recovery Outline

19

f is not therefore required to be consistent with Comps; server f is free

to restore Jobs to a state that does not reflect the submission of any jobs.

Now, suppose that server g is the next to recover. During its JOIN phase,
server g will synchronize its log with that of server f on the state of Jobs.

To do this, g will delete both job submissions from its log. In addition, g
will also delete the completion notification (compt) in order to preserve the
causal consistency of its log. Once g has restored its replica of Jobs it will

proceed to ACTIVATE object Comps, restoring its replica of that object
to a state that does not reflect the completion of any jobs. When server

h finally recovers, it will delete comp, from its log and restore its object
replica to the appropriate state.

5 Log Transformations

Our algorithms implementing the JOIN and ACTIVATE phases are based
on functions for adding and deleting requests from servers logs. The main
difficulty in designing these functions is ensuring that they preserve the
causal consistency of the logs on which they operate.

5.1 Log Addition

Consider first the problem of adding a request to a log. Let z.A denote a
request on object A and let f denote a server of object A (i.e. f E SERVA).

Request z.A is added to the log of server f, (LI,--), by inserting it
into the log at some point where the resulting log order remains consistent
with -<R. The resulting log, however, is not necessarily causally consistent.

There may be causal dependents of request z.A, on objects served by f,
that are not present in the resulting log. In order to preserve the causal
consistency of server f's log, these missing dependents must also be added.

Let DEPg(r.A) denote the set of requests on object B that are causal

dependents of request z.A. Formally,

DEPa(z.A) = {y.B E R I y -<R z

20

We denote the function of adding request z.A to the log of sei ier f as

add,.A(L, --*). Formally, this function is defined as:

add,.A(L,-,) = (L,-'L)

where

L = L1 U {z.A} U [U DEPB(z.A)]
(B I IESERVS)

-L is any extension of ---- consistent with -<I.

This definition can easily be extended to accommodate the addition of

multiple requests. We will let addq(Lf, -) denote the addition of all of

the requests in Q to the log of server f. The definition of addQ(L , "j)

can be found in [Kan89].

5.2 Log Deletion

The deletion of a request from a server's log is handled in a manner anal-

ogous to the addition of a request. As above, let z.A denote a request on

object A and let f denote a server of object A.

Request z.A is deleted from the log of server f by simply removing it,

preserving the order of the remaining requests. Again, however, the result-

ing log may not be causally consistent. There may be requests remaining

in the log that are dependent on the deleted request. In order to preserve

the causal consistency of the log, these requests must also be removed.

Let CON(z.A -< y.B) denote the relation that request y.B is not causally

dependent on request x.A. That is, the relation CON(z.A -< y.B) is true

when :.A -A y.B holds (the relation is contradicted).

We denote the function of deleting request z.A from the log of server f

as delete..A(L,, -.). Formally, this function is defined as:

delete-.A(Lf,-) = (L,-.L)

where

21

L = {y.B E L, I y.B L.A A CON(z.A -< y.B)}
V X,y E L: (X -L Y) * (X -- Y)

As was the case for log addition, log deletion can easily be extended to

accommodate the deletion of multiple requests. We let deleteQ(Lf, -')

denote this function. Its definition can also be found in [Kan89l.

6 Synchronization Solutions

JOIN and ACTIVATE are implemented by adding and deleting requests

from a server's log. A recovering server's log is altered until it reflects a

state that is in agreement with the states of the other servers in the system.

The log is then used by the recovering server to reconstruct the states of
its object replicas.

6.1 JOIN Implementation

When a server, f, first recovers from a failure its log, (L1 , -- ,), is brought

into agreement with the states of active objects. The current states of the

active objects are transferred to the recovering server and written in its log,

replacing any states previously logged for the objects. The actual log of

server f, (L 1 , -01), is altered in two ways. First, any request for an active

object that is present in the log, but not present in the object's transferred

state, is removed from the log. These requests represent updates that were

never recovered for the object. Formally, these non-recovered requests are:

NRI = U [(L.,,-,) IA - ASA]
(A I ACTA *)}

Second, any request present in the transferred state of an object, that is not

present in the log, is added to the log. These requests represent updates

that were missed by the recovering server during its failure. Formally, these

missing requests are:
MS/ = U [ASA - (L,-/)IA

{A I fESERVA}

22

, i i I I I I I I I I II I I

The resulting log, the log solving the JOIN problem for server f, is:

(L;,-;) = addus,(deleteNt,(Lf,-*l))

6.2 ACTIVATE Implementation

Once the log of a recovering server is brought into agreement with the

states of active objects, it is then brought into agreement with the logs of

other recovering servers on the states of inactive objects. Let A denote an

inactive object in the system (i.e. ACTA = 0). And let A be such that all
recovering servers (i.e. all members of RECA) have completed their JOIN

phases.

In order to restore object A, the recovering servers of A first agree on

a state for it. Ideally, this state is the most complete state constructible

from their logs, the state formed by combining all of their logged requests:

ISA = U (L, -A)
IEP"ECA

This ideal state can, however, be inconsistent with the states of some

active objects. There may be requests in the ideal state that have dependen-

cies on requests for other objects that were not recovered for those objects.

In order to preserve the consistency between objects, these inconsistent

requests must be omitted from the recovered state of object A.

We let SAFE(z.A) denote the predicate that request z.A is consistent

with the states of all active objects. That is, request x.A does not have any

dependencies on requests not recovered for those objects. Formally,

SAFE(z.A) - A [DEP(z.A) _ ASa I
(B I ACTg*O)

The state recovered for object A, the most complete and consistent state

constructible from the server's logs, is therefore:

NSA = {z.A G ISA 4 S.4FE(z.A)}

23

This state is installed into the logs of the recovering object A servers in
the same manner that the transferred states were installed into their logs

during their JOIN phases. For each recovering server, f, the new state is
installed in two parts. First, any object A request present in the log of
server f, that is not present in the new state, is removed from the log.

These removed requests are the inconsistent requests that were omitted
from the ideal state. Formally, these requests are:

NRf = (L,,-.,) IA - NSA

Second, any request present in the new state, that is not present in the log,

is added to the log. Formally, these missing requests are:

MS/ = NSA - (L1,-.,) IA

The resulting log, the log solving the ACTIVATE problem for object A

at server f, is:

(L , -) = addMs,(deleteNR,(L,, -1))

Actually, the new state recovered for object A may not be totally con-

sistent with the states of active objects. It is possible that an active object

may have a dependency on a request that is not recovered for object A.

This can happen, for example, if the dependent request was never logged
or because the servers that did log it never recovered in time to take part in
the ACTIVATE phase. When this problem of a missing dependent occurs,
the ACTIVATE phase must abort the restoration of object A. It must then
wait for additional servers of object A to recover (hopefully with the miss-

ing dependent present in one of their logs) before re-attempting to activate
the object.

7 Dependency Estimation

The implementations of the JOIN and ACTIVATE phases assume that

servers have knowledge of -<R. In particular, the implementations are based

24

on the values of DEPB(z.A), CON(z.A -< y.B), and SAFE(x..4), which de-

pend on -<R. Servers, however, will not often have access to this dependency

information. Thus, servers will not be able to use the implementations as
they have been presented. Instead, servers will have to estimate dependency

information and use those estimates to coordinate their logs.

7.1 Dependency Types

Request dependencies can be estimated from the orderings of requests in

servers logs. There are two types of dependencies: transitive and direct. A

transitive dependency is a dependency formed from the composite of other

dependencies. That is, a dependency, z -<R g, is transitive if it is due to a

sequence of direct dependencies:

Z <R Zt -<R Z2 "<R .. R Zn -<R Y

A dependency is direct if it is not the composite of other dependencies.

Direct dependencies are the basic dependencies in a system. Formally,

Definition 7.1 An dependency, x.A -<R y.B, is direct if

-3z ER: (z-<Rz A z-<RY)

Definition 7.2 A dependency, x --<,q y, is transitive if it is not direct.

7.2 Object Dependency Relation

As stated above, servers will not often have knowledge of the causal de-

pendency relation. We assume, though, that servers have knowledge of

a generalization of this relation. This generalization is called the object

dependency relation.

Definition 7.3 The object dependency relation, A 'R B, holds between

two objects, A, 8 E D, if it is possible that an object B request is causally

dependent on an object A request.

25

The object dependency relation only tells a server about potential depen-

dency. If the relation A "-R B holds, then it is possible that some object B

requests are dependent on some object A requests. However, a server does

not know which requests, if any, are related. If two objects are unrelated,

A -/* B, then a server does know that no object B request is causally
dependent on any object A request. Formally, this can be summarized as
follows:

V z.A,y.B E R: Z.A -<R y.B * A "+,B

7.3 Basic Estimates

We begin this section by presenting our basic estimates of the causal de-

pendency relation. These estimates are designed to approximate direct

relationships between requests. The basic estimates are used later in this

section to build more complex estimates for approximating transitive rela-

tionships.

In order to help ensure that each direct dependency is represented in

the order of some server's log, we assume that any pair of objects, between

which direct dependencies may hold, have overlapping server sets. Formally,

we assume that

V direct x.A -<R y.B: (SERVA n SERVB $ 0)

7.3.1 Request Ordering

Our basic estimate of the relation CON(z.A -< y.B) is denoted by the

relation con0 (z.A -< y.B). It is designed to approximate whether or not two

requests, z.A and y.B, are directly related. In particular, when the estimate

con°(z.A -< y.B) is true, it is guaranteed that request y.B is not causally

dependent on request x.A. When the estimate is false, though, there is no

guarantee as to whether or not the requests are related.

The idea behind the estimate is to examine servers' logs for evidence

that the requests are unrelated. Recall that, according to the causality

26

constraint on logs, if a server logs one request then it must previously have

logged all of that request's dependents that are on objects managed by

the server. It therefore follows that if some server has logged request y.B

before request z.A, then y.B cannot be causally dependent on request z.A.

Similarly, if some server of both objects A and B has logged request y.B

but not request z.A, then request y.B cannot be dependent on request z.A.

Formally,

Definition 7.4 The relation con°(z.A -< y.B) holds between any two re-

quests, z.A, y.B E R, if and only if any of the following conditions is true:

1. A -/-aB

2. 3 f E SERVAfSERVB : z.A,y.B E Li A y.B- z.A

3. 3 f E SERVAnSERVa : y.B E Lf A z.A Lf

7.3.2 Dependency Set

Our basic estimate of DEPB(z.A) is denoted depPB(z.A). It is designed to

approximate the set of direct object B dependents of request x.A. Our

estimate has the property that, when defined, it is either equal to the true

dependency set or an overestimate of it.

Like the previous estimate, this estimate is based on the causality con-

straint for logs. As pointed out earlier, if a server logs one request, then it

must previously have logged all of that request's dependents that are on ob-

jects it serves. Thus, if a server of both objects A and B has logged request

z.A, then that server's log must contain all of the object B dependents of

z.A in positions preceding z.A in the log. The set of object B requests

preceding z.A can therefore be used as an estimate of the true dependents.

Some of these object B requests may not, however, be real dependents

of z.A. They may just be requests that happened to get logged before z.A.

Some of these extraneous requests can be detected and eliminated from the

27

.... M l l li lWl I I II

approximation by using the first basic estimate. In particular, the set of

object B dependents of request z.A can be estimated as follows:

I if -3f E SERVA n SERVa : z.A E Lf

if- B/-,RA

dep(z.A) {y.B I 3f ESERVAnSERVB:

(z.A,y.B E Lf A y.B -f, z.A o.w.

A -'conO(Y.B -< Z.A)) }

Note that the estimate is undefined when no server of both objects A and

B has logged request z.A. Under this condition, the estimation method
presented here cannot be used.

7.4 Compound Estimates

Transitive dependencies are estimated by approximating the sequences of

direct dependencies out of which they are built. In presenting these esti-

mates, the following definition will be useful:

Definition 7.5 A chain, H, is a sequence of related objects.

H = A1 -1R A2 -,R ... R A,

Intuitively, a chain represents a sequence of objects along which a transitive

dependency may occur. If a chain such as H exists, then it is possible for
an object A, request to be dependent on an object A1 request through

a sequence of dependencies on requests on objects An- 1 , A,,- 2 . . . , A2.

However, there is no guarantee that such a transitive dependency exists.

The existence of a chain only implies the potential for such a dependency.

We let AB-CHAINS denote the set of all chains from object A to object

B.
The following definitions, based on chains, will also be useful:

28

Definition 7.6 A sub-chain of a chain, H,

H = A, i A2 ...

is any subsequence of its objects

H' = A , iR A., 1 -R ... Rf A,

where 1 m_ < m. < ... < ni < n.

Definition 7.7 The AA 3 sub-chain of a chain, H,

H = A, -t A -R... -R A,

is the sub-chain of objects from A. to Aj:

H,.., = A, -R A.+z -R ... -R A,

7.4.1 Dependency Set

We denote our compound estimate of DEPB(Z.A), the object B dependents
of request z,.A, by the request set depe(z.A). This estimate, like the basic

estimate, has the property that when defined it contains all of the object
B dependents of request Z.A, plus possibly a few extraneous requests.

This estimate is built out of estir,ales of dependencies along individual
chains. In order to estimate the objt..A B dependents of request z.A, the

dependents along each chain from A to B are separately estimated. These

estimates are then combined to form a complete estimate of the dependency
set. Specifically, let H denote any chain.

H = A, - A2 "- A2 .- * An

We let dep7f(z,.A,) denote our estimate of the object At dependents of

request z,,.A, that occur along chain H. That is, dep#q(z,,.A,,) estimates

the set of object A1 requests that are related to z,1 .A,, by a sequence of

dependencies on the objects in chain H.

29

The estimate dep#(z,,.A,) can be formed in many ways. First, if there is
a server that manages replicas of both objects A, and A,,, then an estimate
can be obtained by simply applying the basic estimate depA,(z.A,,). In
general, however, the server sets of objects A, and A,. will not overlap
unless the objects are directly related.

Alternately, an estimate can be formed by subdividing the problem.
That is, an estimate can be formed by first choosing some object in the
chain, A. (1 < i < n), estimating the object Ai dependents of z,..A,., and
then estimating the object A, dependents of the object Ai dependents.
Again, if the server sets of objects A, and A, overlap, and the server sets of
objects A, and A, overlap, the basic estimates can be applied to solve each
these sub-problems. That is, if the server sets overlap, an estimate can be
formed directly along the sub-chain

A, -it A, -it A,.

However, this is not likely to be the case unless the pairs of objects are
directly related. If the server sets do not overlap, then each of the sub-
problems will have to be further subdivided in a manner similar to the
original problem. In general, the problem will have to be sub-divided until
a sub-chain of H is found

A1 ".R A,., -i A,. . R . R A,,, R A,.

1 <im <m 2 < ... <m ,<n

in which each pair of adjacent objects have overlapping server sets. An
estimate can then be formed along this sub-chain by first approximating
the object A,, dependents of zn.A,.; then approximating the object A,,-,
dependents of the object A., dependents; and similarly approximating the
dependents for each successive object down the sub-chain.

This process can be specified recursively in the following manner. Note
that the estimate is extended to operate on sets of requests. That is,

30

dep%(Q) denotes the set of object A, dependents of the object A,, requests
in Q:4

U deP,(Z2 .A2) IHI =2
z2.AEQ

dep7(Q) = U de,...(deem....(Z,.A.)) IHII > 2
,,.Ac-Q

wher I < i < a is chosen so that the estimates are
defined.

Note that there may be several choices of i for which the estimates are
defined. Each will likely yield a slightly different approximation of the true
dependency set. However, each is guaranteed to contain all of the true
dependencies that occur along H. Because of this, an even more accurate
estimate of the true dependency set (one with fewer extraneous requests)
can be formed by intersecting the estimates from each choice of i. The
estimate can thus be modified as follows:

U depP°, (z,.A,) IIHII = 2
x2.A3EQ

:(Q)= u [, ,(p,,..4.) n
&..,,cQ[n deem,...(dep%.... (x,,.A.))]II]HI

Note that the definitions of union and intersection must be extended to
take into account the possibility of undefined approximations. This is done
as follows:

.1. if3i : Si = .I

if Vi: S =Ln s={

{I IOW.

4The length of a chain, H, is denoted by IIHII. This is the number of objects in the

chain.

31

The estimate of the complete set of object B dependents of request z.A
is formed by combining the estimates of dependency along each chain from

B to A. Formally,

depjB(z.A) U deem(z-A)
HEBA-CHAINS

T.4.2 Request Ordering

We denote our compound estimate of the predicate CON(z.A -< y.B) by the
predicate con-(z.A -< y.B). Like the basic estimate, this predicate has the
property that, when true, it is guaranteed that request y.B is not casually
dependent on request z.A. And, when false, the requests may or may not
be related.

As with the dependency set estimate, the request ordering estimate is
built up from estimates of ordering along individual chains. For any A, A,-
chain, H, we let con"(z.A, -- zn.A,) denote our estimate of whether or not

request z,..A is causally dependent on request Z.A, along chain H. When
the estimate is true, it is guaranteed that request z,.A. is not dependent
on request z .A1 by a sequence of dependencies along the chain.

The idea behind this estimate is to search the chain for an object, A,, at
which any possible dependency path from z, to z, is broken. That is, the
chain is searched for an object, A,, such that none of the Ai dependents of
z,, are dependent on z. The existence of such an object would imply that
request z,, is not dependent on request z1 by a sequence of dependencies
that include object Ai. Because Ai is a part of chain H, this would in turn
imply that the requests cannot be dependent along chain H.

The estimate is formed by examining each object, Ai, in the chain. For
each such object, the dependents of request x,.A, are estimated. These
dependent requests are then recursively tested to determine if any of them
are dependent on z2.A 1 . The formal definition of this function is given
below. Note that the estimate is extended to operate on sets of requests;
that is, con A(.A1 -< Q) denotes our approximation of whether or not any

32

of the object A. requests in Q are causally dependent, along chain H, on
request z1 .A1 :

A c o-(zi z2 =) 11111 = 2
an.A3EQ

co-n(, 1 .A1 -< Q) = A [con°(z, z:,,) V
.. A %4Q o.W .

V o,,,(zt - dep..(z,,)) 11

In order to estimate whether or not two requests are related in general,
the estimates of their dependency along individual chains are combined.

Formally,

co,"(x.A -< y.B) = A con"(z.A -< y.B)
HEAB-CHAINS

7.4.3 Safety

Our last compound estimate is denoted safe"(z.A). It is designed to ap-

proximate the predicate SAFE(z.A). This estimate has the property that,
when true, it is guaranteed that request x.A is consistent with the states
of all active objects in the system. That is, when the estimate is true, it is

guaranteed that request z.A does not have a dependency on a request for
an active object that was not recovered as part of that object's state. If
the estimate is false, though, the request may or may not be safe.

Like the other compound estimates, the safety predicate is built from
estimates of safety along individual chains. For any A A.-chain, H, we
let safe (z,..A.) denote our estimate of the safety of request z..A, along

chain H. When true, this estimate guarantees that request z,.A, has no
dependencies, along chain H, on non-recovered requests for object At.

Before defining this estimate, though, some motivation is first presented.
Suppose a request x..A. is not safe along some chain, H. That is, request
z,,.A. is dependent on some non-recovered request, z1.AI V ASA,, by a

sequence of dependencies along chain H:

ZI.A, -<R z 2 .A2 -<R ... -<R z,.A,1

33

Because each of the requests in this sequence is dependent on X1 ..A , it
follows that each request zi.A is also unsafe, along sub-chain H..i. Because

unsafe requests are never recovered for an object, it further follows that
none of the unsafe requests in the above dependency sequence can be part
of their object's active states. Thus, if a request x,.A, is unsafe along chain

H, then that request has a non-recovered dependent from each active object
in the chain. Conversely, if there is an active object in the chain, A,, whose
active state contains all of the object A, dependents of zI.AR, then zI.A,.
must be safe along chain H.

The safety estimate is based on looking for objects such as A,. In par-
ticular, the safety of request z,,.A. along chain H is estimated by examining
each active object, A,, in the chain. For each such object, the dependents
of request z,,,.A are estimated and tested to determine if they are present
in the object's active state. If all such dependents are present, then request

z,,.A,, is safe along chain H.

safe"(z,.A.) - 3i : (ACTA, # 0 A dee,...(zl.A.) C ASA.)

The general estimate of the safety of request z.A is built by combining
the estimates of the request's safety along individual chains. Specifically,
a request is safe if it is safe along all chains of dependency from active

objects. Formally,

safe"(z.A) A A safew (z.A)
(BED I ACTa$01 HEBA-CHAINS

7.5 Using the Estimates

The compound estimates can be used directly in the log synchronization

algorithms in place of the values they approximate. The proof that the
algorithms remain correct is given in [Kan891.

A problem can arise, though, when the estimates do not have access to
all of the logs in the system. At the time an estimate is formed, some servers

may not be functioning. Because of this, the estimates may have access to

34

limited ordering information, based on which server logs are available. This
can lead to undefined estimates, producing aborts of the synchronization
algorithms. Unfortunately, there is no way around this problem. When an
abort occurs, the server or servers involved must simply wait until addi-

tional failed servers have recovered (providing additional ordering informa-
tion) and then re-execute their synchronization algorithms.

Limited information does not always lead to undefined estimates, how-
ever. In order to approximate the dependencies along a particular AB-

chain, H, an estimate considers all AB-subchains of H. As long as an
approximation can be formed along some sub-chain of H, the estimate will
be defined.

Another problem can arise when a synchronization algorithm adds or
deletes a request from a server's log. Because the algorithms use only
estimates of the dependencies in the system, it is possible that a synchro-
nisation algorithm may believe that a request needs to be added or deleted
from the state of an active object. When this occurs, it is a sign that the

estimates do not have access to sufficient ordering information to deduce
accurate approximations. In these cases, the invoking server should abort
the synchronization algorithm and wait for additional servers to recover

(with additional ordering information for the estimates).

8 Special Systems

When long chains exist in a system, the compound estimates of the previous

section can be fairly expensive to compute. In order to form an estimate
along a particular chain, H, the compound estimates recursively sub-divide
the chain and combine simple estimates from each of the sub-divisions.

Unfortunately, the number of sub-divisions of a chain grows exponentially
with the length of the chain. Thus, when a chain is long, the number of sub-

divisions that are considered by the estimates is large. The estimates may
therefore be quite expensive to compute. And in turn, the synchronization
algorithms will be expensive to run.

35

In order to reduce this cost, the basic estimates can sometimes be used in
plate of the compound estimates in the synchronization algorithms. Unlike
the compound estimates, the basic estimates do not involve recursion and
are, in general, fairly cheap to compute. Unfortunately, the basic estimates
can only be used to approximate relationships between two objects, A and

B, if the server sets of those objects overlap. Thus, in order to replace the
compound estimates with the basic estimates, it must be the case that every
pair of related objects have overlapping server sets, regardless of whether
the objects are directly or transitively related.

Of course, in general the server sets of all related objects will not overlap,
and so the basic estimates will not be able to be used. Even if the server sets
do overlap, however, the basic estimates are not guaranteed to be defined
at all times. As pointed out in the previous section, server failures can

cause estimates to be undefined. The exact estimates that are defined at

any given time depends on the servers that are functioning; that is, the
estimates that are defined depends on which server logs are available to the
estimates.

There is, however, an interesting class of systems in which the basic
estimates are always defined. We call this class the backward inclusion
systems:

Definition 8.1 A system is a backward inclusion system if the following
restriction holds on the server sets of objects:

V A, B E R : A-,.q B =; SERVB g SERVA

Intuitively, a system is a backward inclusion system if any server that man-

ages a replica of an object, B, also manages replicas of all objects on which
B depends. This restriction implies that if a server logs a request z.B, then
it also logs all dependents of x.B.

The set of backward inclusion systems includes hierarchically organized
systems such as the one depicted in figure 8. In this figure, each object's
server set is completely contained in the server sets of all objects above it in

36

Al O0A

A i

3 a F :

(a) (b)

Figuze8: A hieruchical system

the hierarchy. Figure 8(a) shows the tree structured dependency relation-

ship between the six objects in the system. Figure 8(b) shows the overlap

between the server sets of the different objects.

The proof that the synchronization algorithms never abort in backward

inciusion systems is given in [Kan89. The proof is based on the fact that

each server logs complete dependency information on all of the requests in

its log, and so there is always complete dependency information available

on any request that is added or deleted from a server's log. It should be

pointed out that the log addition and deletion functions must be slightly

modified when the basic estimates are used. The reason for this and the

appropriate modifications are given in (Kan891.

9 Conclusions

This paper presented a new mechanism for performing optimistic log-based

recovery in distributed systems. Unlike existing methods, the mechanism

presented does not require the maintenance of explicit dependency informa-

tion. Instead, by requiring that the server sets of related objects overlap,

the mechanism is able to estimate any needed dependency information from

the ordering of requests in servers' logs.

In addition, the mechanism avoids the use of process rollback as a syn-

37

chronization technique. When a server first recovers from failure, its state
(the state represented in its log) is brought into agreement with the state

of the system. A server is never allowed to recover in an inconsistent state.
However, in order to ensure this, a recovering server may have to be blocked

until sufficient information is available in the system to deduce that the
server's state is consistent. Because of this potential for blocking, a re-

stricted set of systems (the backward inclusion systems) were presented in
which blocking never occurs and in which inexpensive dependency estimates

can be used.
It should be pointed out that our mechanism makes no guarantees about

the consistency between the states of clients and servers when the client and
server sets differ. Because of failures, a server may lose a client request.
When this kappens, our mechanism only ensures that the states of different

servers will be brought into agreement. It makes no attempt to coordinate
the states of both clients and servers. In some applications, for example

the sample printer service described in this paper, the loss of client requests
is not critical. In many other applications, however, consistency between

clients and servers is crucial. In applications such as these, our mechanism

requires that the sets of clients and servers be identical.

Our mechanism can be extended to enforce forms of consistency other
than causal consistency. As described in [Kan89}, the basic approach of

estimating and ensuring dependencies can be used to ensure an atomic

form of consistency. In the atomic form, a set of requests can be grouped

to form a set with the property that no request in the group is recovered
after a failure unless all of the requests in the group are also recovered.

By.combining this atomic form of consistency with the casual form, it may
even be possible to derive a serializable form of consistency implementable

by our basic mechanism.

One problem that remains to be addressed is that of restricting the

sizes of logs. As we have presented them, logs can grow without bound.

Clearly, in any implementation of the mechanism, the growth of logs must

be limited through the use of checkpoints. The main difficulty involved in

38

maintaining checkpoints is estimating the dependencies that exist between

different checkpoints and between requests and checkpoints. A detailed

discussion of this problem and its solution is provided in [Kan89].

Although the synchronization algorithms presented in this paper have

not yet been implemented, we believe that doing so should be fairly straight

forward. For example, in the case where the basic estimates are used, object

synchronization amounts to little more than sorting. One of the problems

with building an implementation, though, is finding applications on which

to test and measure its performance. Currently, applications with a high

degree of object inter-dependence are rare. Because of the increasing use of

object oriented interfaces, however, we believe that such applications will

become increasing common.

References

[BHG87] Philip A. Bernstein, Vassos Hadzilacos, and Nathan Good-
man. Concurrency Control and Recovery in Database Systems.
Addison-Wesley Publishing Company, first edition, 1987.

[BJ87a] Kenneth P. Birman and Thomas A. Joseph. Exploiting virtual
synchrony in distributed systems. In Proceedings of the Eleventh

ACM Symposium on Operating System Principles, pages 123-
138. ACM, November 1987.

[BJ87b] Kenneth P. Birman and Thomas A. Joseph. Reliable communi-
cation in the presence of failures. ACM Transactions on Coin-
puter Systems, 5(1):47-76, February 1987.

[CASD86] Flaviu Cristian, Houtan Aghili, Ray Strong, and Danny Dolev.
Atomic broadcast: From simple message diffusion to byzantine
agreement. Research Report RJ 5244 (54244), IBM, July 1986.

[CM84 J. M. Chang and N. F. Maxermchuk. Reliable broadcast pro-
tocols. A CM Transactions on Computer Systems, 2(3):251-273,
August 1984.

39

[DGMS85 Susan B. Davidson, Hector Garcia-Molina, and Dale Skeen.
Consistency in partitioned networks. ACM Computing Surveys,
17(3):341-370, September 1985.

[FC87 Ross S. Finlayson and David R. Cheriton. Log files: An ex-
tended file service exploiting write-once storage. In Proceedings
of the Eleventh ACM Symposium on Operating System Princi-
plea, pages 139-148. ACM, November 1987.

tGra78] J. Gray. Notes on database operating systems. In Lecture Notes
in Computer Science 60. Springer-Verlag, Berlin, 1978.

[J+871 David R. Jefferson et al. Distributed simulation and the time
warp operating system. In Proceedings of the Eleventh ACM
Symposium on Operating System Principles, pages 77-93. ACM,
November 1987.

[Jef85] David R. Jefferson. Virtual time. ACM Transactions on Pro-
gramming Languages and Systems, 7(3):404-425, July 1985.

[JZ88] David B. Johnson and Willy Zwaenepoel. Recovery in dis-
tributed systems using optimistic message logging and check-
pointing. In Proceedings of the Seventh Annual A CM Symposium
on Principles of Distributed Computing, pages 171-181. ACM,
August 1988.

[Kan89l Kenneth P. Kane. Log-Based Recovery in Asynchronous Dis-
tributed Systems. PhD thesis, Cornell University, May 1989.
Forthcoming.

[Lam781 Leslie Lamport. Time, clocks, and the ordering of events in a
distributed system. Communications of the ACM, 21(7):558-
565, July 1978.

[LL86] Barbara Liskov and Rivka Ladin. Highly-available distributed
services and fault-tolerant distributed garbage collection. In
Proceedings of the Fifth Annual A CM Symposium on Principles
of Distributed Computing, pages 29-39. ACM, August 1986.

40

[PBS88] Larry L. Peterson, Nick C. Buchholz, and Richard D. Schlicht-
ing. Preserving and using context information in interprocess
communication. Technical Report TR 88-23, Department of
Computer Science, University of Arizona, Tucson, AZ 85721,
May 1988.

[Ske85] Dale Skeen. Determining the last process to fail. ACM Trans.-
actions on Computer Systems, 3(1):15-30, February 1985.

[SS831 R. Schlichting and F. Schneider. Fail-stop processors: An ap-
proach to designing fault-tolerant distributed computing sys-
tems. ACM Transactions on Computer Systems, 1(3):222-238,
August 1983.

[SY851 Robert E. Strom and Shaula Yemii. Optimistic recovery in
distributed systems. ACM Transactions on Computer Syatems,
3(3):204-226, August 1985.

41

